Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.192
1.
Front Immunol ; 15: 1377470, 2024.
Article En | MEDLINE | ID: mdl-38698839

Atherosclerosis (AS) is recognized as a chronic inflammatory condition characterized by the accumulation of lipids and inflammatory cells within the damaged walls of arterial vessels. It is a significant independent risk factor for ischemic cardiovascular disease, ischemic stroke, and peripheral arterial disease. Despite the availability of current treatments such as statins, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, and lifestyle modifications for prevention, AS remains a leading cause of morbidity and economic burden worldwide. Thus, there is a pressing need for the development of new supplementary and alternative therapies or medications. Huangqin (Scutellaria baicalensis Georgi. [SBG]), a traditional Chinese medicine, exerts a significant immunomodulatory effect in AS prevention and treatment, with baicalin being identified as one of the primary active ingredients of traditional Chinese medicine. Baicalin offers a broad spectrum of pharmacological activities, including the regulation of immune balance, antioxidant and anti-inflammatory effects, and improvement of lipid metabolism dysregulation. Consequently, it exerts beneficial effects in both AS onset and progression. This review provides an overview of the immunomodulatory properties and mechanisms by which baicalin aids in AS prevention and treatment, highlighting its potential as a clinical translational therapy.


Atherosclerosis , Flavonoids , Humans , Flavonoids/therapeutic use , Flavonoids/pharmacology , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Atherosclerosis/immunology , Animals , Immunomodulating Agents/therapeutic use , Immunomodulating Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology
2.
Front Immunol ; 15: 1364161, 2024.
Article En | MEDLINE | ID: mdl-38803504

Introduction: Atherosclerosis, a leading cause of global cardiovascular mortality, is characterized by chronic inflammation. Central to this process is the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome, which significantly influences atherosclerotic progression. Recent research has identified that the olfactory receptor 2 (Olfr2) in vascular macrophages is instrumental in driving atherosclerosis through NLRP3- dependent IL-1 production. Methods: To investigate the effects of Corilagin, noted for its anti-inflammatory attributes, on atherosclerotic development and the Olfr2 signaling pathway, our study employed an atherosclerosis model in ApoE-/- mice, fed a high-fat, high-cholesterol diet, alongside cellular models in Ana-1 cells and mouse bone marrow-derived macrophages, stimulated with lipopolysaccharides and oxidized low-density lipoprotein. Results: The vivo and vitro experiments indicated that Corilagin could effectively reduce serum lipid levels, alleviate aortic pathological changes, and decrease intimal lipid deposition. Additionally, as results showed, Corilagin was able to cut down expressions of molecules associated with the Olfr2 signaling pathway. Discussion: Our findings indicated that Corilagin effectively inhibited NLRP3 inflammasome activation, consequently diminishing inflammation, macrophage polarization, and pyroptosis in the mouse aorta and cellular models via the Olfr2 pathway. This suggests a novel therapeutic mechanism of Corilagin in the treatment of atherosclerosis.


Atherosclerosis , Glucosides , Hydrolyzable Tannins , Inflammasomes , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Signal Transduction , Animals , Hydrolyzable Tannins/pharmacology , Hydrolyzable Tannins/therapeutic use , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Mice , Signal Transduction/drug effects , Inflammasomes/metabolism , Glucosides/pharmacology , Glucosides/therapeutic use , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Male , Disease Models, Animal , Mice, Inbred C57BL , Mice, Knockout, ApoE
3.
Discov Med ; 36(184): 1070-1079, 2024 May.
Article En | MEDLINE | ID: mdl-38798265

BACKGROUND: Atherosclerosis (AS) is a chronic inflammatory vascular disease with a complex pathogenesis. Astragaloside IV (AST IV), the primary active component of Astragalus, possesses anti-inflammatory, antioxidant, and immunomodulatory properties. This research aims to investigate the outcome of AST IV on AS and its potential molecular mechanism. METHODS: A high-fat diet (21% fat, 50% carbohydrate, 20% protein, 0.15% cholesterol, and 34% sucrose) was utilized to feed Apolipoprotein E deficient (ApoE-/-) SD rats for 8 weeks, followed by continuous intragastric administration of AST IV for 8 weeks. Biochemical detection was conducted for serum lipid levels and changes in vasoactive substances. After Masson staining, aortic root oil red O staining, and Hematoxylin Eosin (HE) staining, the efficacy of AST IV was verified using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The mRNA expression levels of inflammatory factors and endothelial dysfunction-related biomarkers in rat aortic root tissues were appraised. The changes in the composition of intestinal flora in rats after AST IV treatment were appraised using Image J (Multi-point Tool). Western blot was used to evaluate phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway-related protein levels in rat aortic root tissues. RESULTS: AST IV administration alleviated the pathological symptoms of AS rats. AST IV administration reduced serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), endothelin-1 (ET-1) and angiotensin (Ang)-II (Ang-II) levels, and augmented serum high-density lipoprotein cholesterol (HDL-C) and nitric oxide (NO) levels. At the same time, AST IV administration inhibited the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1ß, vascular cell adhesion molecule-1 (VCAM-1), matrix metalloproteinase-2 (MMP-2), macrophage inflammatory protein-1 (MCP-1), and intercellular adhesion molecule-1 (ICAM-1) in the aortic root tissue of AS rats. In addition, the intestinal flora changed significantly after AST IV administration. The number of Bifidobacterium, Lactobacillus, and Bacteroides augmented significantly, and Enterobacter, Enterococcus, Fusobacterium, and Clostridium significantly decreased. Mechanistically, AST IV administration inhibited the phosphorylation of PI3K, Akt, and mTOR in AS rats. When combined with Dactolisib (BEZ235) (a PI3K/Akt/mTOR pathway inhibitor), AST IV could further inhibit phosphorylation and reduce inflammation. CONCLUSION: AST IV has a potential anti-AS effect, which can improve the pathological changes of the aorta in ApoE-/- rats fed with a high-fat diet, reduce the level of inflammatory factors, and modulate the composition of intestinal flora via the PI3K/Akt/mTOR pathway.


Apolipoproteins E , Atherosclerosis , Disease Models, Animal , Gastrointestinal Microbiome , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Saponins , Signal Transduction , TOR Serine-Threonine Kinases , Triterpenes , Animals , Saponins/pharmacology , Saponins/therapeutic use , Saponins/administration & dosage , TOR Serine-Threonine Kinases/metabolism , Rats , Triterpenes/pharmacology , Triterpenes/therapeutic use , Triterpenes/administration & dosage , Atherosclerosis/drug therapy , Atherosclerosis/pathology , Proto-Oncogene Proteins c-akt/metabolism , Gastrointestinal Microbiome/drug effects , Male , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Apolipoproteins E/genetics , Diet, High-Fat/adverse effects
4.
J Nanobiotechnology ; 22(1): 263, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760755

The prevalence of cardiovascular diseases continues to be a challenge for global health, necessitating innovative solutions. The potential of high-density lipoprotein (HDL) mimetic nanotherapeutics in the context of cardiovascular disease and the intricate mechanisms underlying the interactions between monocyte-derived cells and HDL mimetic showing their impact on inflammation, cellular lipid metabolism, and the progression of atherosclerotic plaque. Preclinical studies have demonstrated that HDL mimetic nanotherapeutics can regulate monocyte recruitment and macrophage polarization towards an anti-inflammatory phenotype, suggesting their potential to impede the progression of atherosclerosis. The challenges and opportunities associated with the clinical application of HDL mimetic nanotherapeutics, emphasize the need for additional research to gain a better understanding of the precise molecular pathways and long-term effects of these nanotherapeutics on monocytes and macrophages to maximize their therapeutic efficacy. Furthermore, the use of nanotechnology in the treatment of cardiovascular diseases highlights the potential of nanoparticles for targeted treatments. Moreover, the concept of theranostics combines therapy and diagnosis to create a selective platform for the conversion of traditional therapeutic medications into specialized and customized treatments. The multifaceted contributions of HDL to cardiovascular and metabolic health via highlight its potential to improve plaque stability and avert atherosclerosis-related problems. There is a need for further research to maximize the therapeutic efficacy of HDL mimetic nanotherapeutics and to develop targeted treatment approaches to prevent atherosclerosis. This review provides a comprehensive overview of the potential of nanotherapeutics in the treatment of cardiovascular diseases, emphasizing the need for innovative solutions to address the challenges posed by cardiovascular diseases.


Cardiovascular Diseases , Lipoproteins, HDL , Macrophages , Monocytes , Humans , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/metabolism , Lipoproteins, HDL/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Animals , Cardiovascular Diseases/drug therapy , Monocytes/drug effects , Nanoparticles/chemistry , Atherosclerosis/drug therapy , Plaque, Atherosclerotic/drug therapy , Nanomedicine/methods , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology
5.
Arterioscler Thromb Vasc Biol ; 44(6): 1407-1418, 2024 Jun.
Article En | MEDLINE | ID: mdl-38695168

BACKGROUND: LCAT (lecithin cholesterol acyl transferase) catalyzes the conversion of unesterified, or free cholesterol, to cholesteryl ester, which moves from the surface of HDL (high-density lipoprotein) into the neutral lipid core. As this iterative process continues, nascent lipid-poor HDL is converted to a series of larger, spherical cholesteryl ester-enriched HDL particles that can be cleared by the liver in a process that has been termed reverse cholesterol transport. METHODS: We conducted a randomized, placebocontrolled, crossover study in 5 volunteers with atherosclerotic cardiovascular disease, to examine the effects of an acute increase of recombinant human (rh) LCAT via intravenous administration (300-mg loading dose followed by 150 mg at 48 hours) on the in vivo metabolism of HDL APO (apolipoprotein)A1 and APOA2, and the APOB100-lipoproteins, very low density, intermediate density, and low-density lipoproteins. RESULTS: As expected, recombinant human LCAT treatment significantly increased HDL-cholesterol (34.9 mg/dL; P≤0.001), and this was mostly due to the increase in cholesteryl ester content (33.0 mg/dL; P=0.014). This change did not affect the fractional clearance or production rates of HDL-APOA1 and HDL-APOA2. There were also no significant changes in the metabolism of APOB100-lipoproteins. CONCLUSIONS: Our results suggest that an acute increase in LCAT activity drives greater flux of cholesteryl ester through the reverse cholesterol transport pathway without significantly altering the clearance and production of the main HDL proteins and without affecting the metabolism of APOB100-lipoproteins. Long-term elevations of LCAT might, therefore, have beneficial effects on total body cholesterol balance and atherogenesis.


Apolipoprotein A-II , Apolipoprotein A-I , Cholesterol, HDL , Cross-Over Studies , Phosphatidylcholine-Sterol O-Acyltransferase , Recombinant Proteins , Humans , Phosphatidylcholine-Sterol O-Acyltransferase/metabolism , Male , Apolipoprotein A-I/blood , Middle Aged , Cholesterol, HDL/blood , Apolipoprotein A-II/blood , Female , Cholesterol Esters/blood , Cholesterol Esters/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/enzymology , Atherosclerosis/blood , Apolipoprotein B-100/blood , Aged , Adult , Lipoproteins/blood , Lipoproteins/metabolism
6.
Nutrients ; 16(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38732529

The Mediterranean diet, renowned for its health benefits, especially in reducing cardiovascular risks and protecting against diseases like diabetes and cancer, emphasizes virgin olive oil as a key contributor to these advantages. Despite being a minor fraction, the phenolic compounds in olive oil significantly contribute to its bioactive effects. This review examines the bioactive properties of hydroxytyrosol and related molecules, including naturally occurring compounds (-)-oleocanthal and (-)-oleacein, as well as semisynthetic derivatives like hydroxytyrosyl esters and alkyl ethers. (-)-Oleocanthal and (-)-oleacein show promising anti-tumor and anti-inflammatory properties, which are particularly underexplored in the case of (-)-oleacein. Additionally, hydroxytyrosyl esters exhibit similar effectiveness to hydroxytyrosol, while certain alkyl ethers surpass their precursor's properties. Remarkably, the emerging research field of the effects of phenolic molecules related to virgin olive oil on cell autophagy presents significant opportunities for underscoring the anti-cancer and neuroprotective properties of these molecules. Furthermore, promising clinical data from studies on hydroxytyrosol, (-)-oleacein, and (-)-oleocanthal urge further investigation and support the initiation of clinical trials with semisynthetic hydroxytyrosol derivatives. This review provides valuable insights into the potential applications of olive oil-derived phenolics in preventing and managing diseases associated with cancer, angiogenesis, and atherosclerosis.


Angiogenesis Inhibitors , Olive Oil , Phenols , Phenylethyl Alcohol , Olive Oil/chemistry , Humans , Phenols/pharmacology , Angiogenesis Inhibitors/pharmacology , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Diet, Mediterranean , Atherosclerosis/prevention & control , Atherosclerosis/drug therapy , Cyclopentane Monoterpenes , Neoplasms/prevention & control , Neoplasms/drug therapy , Catechols/pharmacology , Aldehydes/pharmacology , Animals , Antineoplastic Agents/pharmacology , Anti-Inflammatory Agents/pharmacology
8.
ACS Appl Mater Interfaces ; 16(19): 24206-24220, 2024 May 15.
Article En | MEDLINE | ID: mdl-38700017

Atherosclerosis is the main risk factor for cardiovascular disease, which accounts for the majority of mortality worldwide. A significantly increased plasma level of low-density lipoprotein cholesterol (LDL-C), surrounded by a monolayer of phospholipids, free cholesterol, and one apolipoprotein B-100 (ApoB-100) in the blood, plays the most significant role in driving the development of atherosclerosis. Commercially available cholesterol-lowering drugs are not sufficient for preventing recurrent cardiovascular events. Developing alternative strategies to decrease the plasma cholesterol levels is desirable. Herein, we develop an approach for reducing LDL-C levels using gas-filled microbubbles (MBs) that were coated with anti-ApoB100 antibodies. These targeted MBApoB100 could selectively capture LDL particles in the bloodstream through forming LDL-MBApoB100 complexes and transport them to the liver for degradation. Further immunofluorescence staining and lipidomic analyses showed that these LDL-MBApoB100 complexes may be taken up by Kupffer cells and delivered to liver cells and bile acids, greatly inhibiting atherosclerotic plaque growth. More importantly, ultrasound irradiation of these LDL-MBApoB100 complexes that accumulated in the liver may induce acoustic cavitation effects, significantly enhancing the delivery of LDL into liver cells and accelerating their degradation. Our study provides a strategy for decreasing LDL-C levels and inhibiting the progression of atherosclerosis.


Apolipoprotein B-100 , Lipoproteins, LDL , Liver , Microbubbles , Plaque, Atherosclerotic , Animals , Liver/metabolism , Liver/drug effects , Liver/pathology , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/pathology , Mice , Lipoproteins, LDL/blood , Humans , Male , Mice, Inbred C57BL , Atherosclerosis/drug therapy , Atherosclerosis/pathology
9.
Phytomedicine ; 129: 155662, 2024 Jul.
Article En | MEDLINE | ID: mdl-38728917

BACKGROUND: Naoxintong capsule (NXT) is a compound traditional Chinese medicine prescription with demonstrated effect for the treatment of cardiovascular and cerebrovascular diseases including atherosclerosis (AS). However, the pharmacological mechanisms of NXT in ameliorating early-stage AS are still unclear, especially regarding the role of gut microbiota. PURPOSE: This study is aiming to evaluate the therapeutic effect of NXT against early-stage AS, and further illustrate the potential correlations among AS, gut microbiota, and NXT. METHODS: Thirty-two male ApoE knockout mice (C57BL/6 background) were fed with a high cholesterol diet (HCD) for 4 weeks to establish an early-stage AS model. NXT in two different dosages and simvastatin (Simv) were than administrated for another 8 weeks. Lipid metabolism indicators and inflammation levels were measured with corresponding assay kits. Changes in blood vessels, liver lesions, and intestinal barrier proteins were evaluated with different staining methods. Furthermore, the gut microbiota structure was analyzed using 16S rRNA sequencing technology, while GC-MS was utilized to determine the fecal contents of short-chain fatty acids (SCFAs). RESULTS: Administration of NXT significantly ameliorated obesity, hyperlipidemia, systemic inflammation, vasculopathy, liver injury, and intestinal barrier disorder in AS mice. Administration of NXT also significantly regulated the gut microbiota disturbance and increased the total contents of fecal SCFAs in AS mice. Furthermore, acetic acid content and the relative abundance of Faecalibacterium in feces were proposed as potential therapeutic biomarkers of NXT for AS treatment as indicated via the correlation analysis. CONCLUSION: This study demonstrated that NXT could effectively treat early-stage AS induced by HCD in mice. NXT regulated the gut microbiota and metabolites, maintained intestinal homeostasis, and improved the systemic inflammatory response. These findings may provide robust experimental support for the clinical use of NXT for AS treatment.


Atherosclerosis , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Mice, Inbred C57BL , Animals , Gastrointestinal Microbiome/drug effects , Drugs, Chinese Herbal/pharmacology , Male , Atherosclerosis/drug therapy , Mice , Apolipoproteins E , Mice, Knockout, ApoE , Lipid Metabolism/drug effects , Fatty Acids, Volatile/metabolism , Disease Models, Animal , Capsules , Diet, High-Fat , Simvastatin/pharmacology
10.
J Agric Food Chem ; 72(21): 12156-12170, 2024 May 29.
Article En | MEDLINE | ID: mdl-38755521

Atherosclerosis (AS) with iron and lipid overload and systemic inflammation is a risk factor for Alzheimer's disease. M1 macrophage/microglia participate in neuronal pyroptosis and recently have been reported to be the ferroptosis-resistant phenotype. Quercetin plays a prominent role in preventing and treating neuroinflammation, but the protective mechanism against neurodegeneration caused by iron deposition is poorly understood. ApoE-/- mice were fed a high-fat diet with or without quercetin treatment. The Morris water maze and novel object recognition tests were conducted to assess spatial learning and memory, and nonspatial recognition memory, respectively. Prussian blue and immunofluorescence staining were performed to assess the iron levels in the whole brain and in microglia, microglia polarization, and the degree of microglia/neuron ferroptosis. In vitro, we further explored the molecular biological alterations associated with microglial polarization, neuronal pyroptosis, and ferroptosis via Western blot, flow cytometry, CCK8, LDH, propidium iodide, and coculture system. We found that quercetin improved brain lesions and spatial learning and memory in AS mice. Iron deposition in the whole brain or microglia was reversed by the quercetin treatment. In the AS group, the colocalization of iNOS with Iba1 was increased, which was reversed by quercetin. However, the colocalization of iNOS with PTGS2/TfR was not increased in the AS group, suggesting a character resisting ferroptosis. Quercetin induced the expression of Arg-1 and decreased the colocalizations of Arg-1 with PTGS2/TfR. In vitro, ox-LDL combined with ferric ammonium citrate treatment (OF) significantly shifted the microglial M1/M2 phenotype balance and increased the levels of free iron, ROS, and lipid peroxides, which was reversed by quercetin. M1 phenotype induced by OF caused neuronal pyroptosis and was promoted to ferroptosis by L-NIL treatment, which contributed to neuronal ferroptosis as well. However, quercetin induced the M1 to M2 phenotype and inhibited M2 macrophages/microglia and neuron pyroptosis or ferroptosis. In summary, quercetin alleviated neuroinflammation by inducing the M1 to M2 phenotype to inhibit neuronal pyroptosis and protected neurons from ferroptosis, which may provide a new idea for neuroinflammation prevention and treatment.


Atherosclerosis , Ferroptosis , Mice, Inbred C57BL , Microglia , Neurons , Pyroptosis , Quercetin , Animals , Ferroptosis/drug effects , Quercetin/pharmacology , Pyroptosis/drug effects , Mice , Microglia/drug effects , Microglia/metabolism , Neurons/drug effects , Neurons/metabolism , Male , Atherosclerosis/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Humans , Macrophages/drug effects , Macrophages/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism
11.
Sr Care Pharm ; 39(6): 228-234, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38803026

Background Recent cardiovascular guideline updates recommend against the use of aspirin for primary prevention of atherosclerotic cardiovascular disease (ASCVD) in older people. However, aspirin use remains common in this population. Objective To implement and evaluate the benefit of a pharmacist-driven aspirin deprescribing protocol compared with primary care provider (PCP) education-only in a primary care setting. Methods This prospective, cohort project targeted deprescribing for patients prescribed aspirin for primary prevention of ASCVD. Patients were included if they received primary care services at the Milwaukee Veterans Health Administration Medical Center (VHA) and were 70 years of age or older. Criteria for exclusion were aspirin obtained outside the VHA system, aspirin prescribed for a non-ASCVD-related condition, and/or a history of ASCVD. Active deprescribing by pharmacists and PCP education took place in the intervention group with PCP education only in the standard-of-care group. The primary outcome was the proportion of patients who had aspirin deprescribed in each group. Secondary outcomes included patient acceptability of the intervention and barriers to implementation. Results A total of 520 patients were prescribed aspirin in the intervention group versus 417 in the education-only group. Sixty-five patients met intervention criteria and were contacted for aspirin deprescribing. The pharmacist-led active deprescribing group led to a higher rate of aspirin deprescriptions versus the education-only group (54% vs 18%; P = 0.0001) for patients who met criteria. Conclusion A pharmacist-led aspirin deprescribing protocol within a primary care setting significantly decreased the number of aspirin prescriptions compared with PCP education only.


Aspirin , Deprescriptions , Pharmacists , Primary Health Care , Veterans , Humans , Aspirin/therapeutic use , Aspirin/administration & dosage , Aged , Female , Male , Prospective Studies , Aged, 80 and over , Cohort Studies , Primary Prevention/methods , United States , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control
12.
FASEB J ; 38(10): e23678, 2024 May 31.
Article En | MEDLINE | ID: mdl-38780199

Melatonin (MLT), a conserved small indole compound, exhibits anti-inflammatory and antioxidant properties, contributing to its cardioprotective effects. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is associated with atherosclerosis disease risk, and is known as an atherosclerosis risk biomarker. This study aimed to investigate the impact of MLT on Lp-PLA2 expression in the atherosclerotic process and explore the underlying mechanisms involved. In vivo, ApoE-/- mice were fed a high-fat diet, with or without MLT administration, after which the plaque area and collagen content were assessed. Macrophages were pretreated with MLT combined with ox-LDL, and the levels of ferroptosis-related proteins, NRF2 activation, mitochondrial function, and oxidative stress were measured. MLT administration significantly attenuated atherosclerotic plaque progression, as evidenced by decreased plaque area and increased collagen. Compared with those in the high-fat diet (HD) group, the levels of glutathione peroxidase 4 (GPX4) and SLC7A11 (xCT, a cystine/glutamate transporter) in atherosclerotic root macrophages were significantly increased in the MLT group. In vitro, MLT activated the nuclear factor-E2-related Factor 2 (NRF2)/SLC7A11/GPX4 signaling pathway, enhancing antioxidant capacity while reducing lipid peroxidation and suppressing Lp-PLA2 expression in macrophages. Moreover, MLT reversed ox-LDL-induced ferroptosis, through the use of ferrostatin-1 (a ferroptosis inhibitor) and/or erastin (a ferroptosis activator). Furthermore, the protective effects of MLT on Lp-PLA2 expression, antioxidant capacity, lipid peroxidation, and ferroptosis were decreased in ML385 (a specific NRF2 inhibitor)-treated macrophages and in AAV-sh-NRF2 treated ApoE-/- mice. MLT suppresses Lp-PLA2 expression and atherosclerosis processes by inhibiting macrophage ferroptosis and partially activating the NRF2 pathway.


Atherosclerosis , Ferroptosis , Melatonin , NF-E2-Related Factor 2 , Animals , Ferroptosis/drug effects , NF-E2-Related Factor 2/metabolism , Melatonin/pharmacology , Mice , Atherosclerosis/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Atherosclerosis/pathology , Male , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Diet, High-Fat/adverse effects , Macrophages/metabolism , Macrophages/drug effects , Mice, Inbred C57BL , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Oxidative Stress/drug effects , Signal Transduction/drug effects , 1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , 1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics , Lipoproteins, LDL/metabolism , Antioxidants/pharmacology
13.
Article En | MEDLINE | ID: mdl-38780292

ABSTRACT: Arteriosclerosis (AS) is a chronic inflammatory disease and Buyang Huanwu decoction (BHD) has been identified as an anti-atherosclerosis effect, and the study is aimed to investigate the underlying mechanism. The E4 allele of Apolipoprotein E (ApoE) is associated with both metabolic dysfunction and an enhanced pro-inflammatory response, ApoE-knockout (ApoE-/-) mice were fed with a high-fat diet to establish an arteriosclerosis model and treated with BHD or atorvastatin (as a positive control). The atherosclerotic plaque in each mouse was evaluated using Oil red O Staining. Elisa kits were used to evaluate blood lipid, interleukin-6 (IL-6), IL-1 beta (IL-1ß), tumor necrosis factor alpha (TNF-α), IL-4, IL-10, and tumor growth factor beta (TGF-ß) contents, while Western blot was applicated to measure inducible nitric oxide synthase (iNOS), arginase I (Arg-1) expression. Meanwhile, pyruvate kinase M2 (PKM2), hypoxia-inducible factor-1 alpha (HIF-1α) and its target genes glucose transporter type 1 (GLUT1), lactate dehydrogenase A (LDHA), and 3-phosphoinositide-dependent kinase 1 (PDK1), as well as IL-6, IL-1ß, TNF-α, IL-4, IL-10, and TGF-ß were evaluated by the quantitative reverse transcription-polymerase chain reaction. BHD treatment significantly reduced body weight and arteriosclerosis plaque area and blood lipid levels including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C). Meanwhile, BHD demonstrated a significant suppression of M1 polarization, by decreased secretion of iNOS and pro-inflammatory factors (IL-6, IL-1ß, and TNF-α) in ApoE-/- mice. The present study also revealed that BHD promotes the activation of M2 polarization, characterized by the expression of Arg-1 and anti-inflammatory factors (IL-4 and IL-10). In addition, PKM2/HIF-1α signaling was improved by M1/M2 macrophages polarization induced by BHD. The downstream target genes (GLUT1, LDHA, and PDK1) expression was significantly increased in high fat feeding ApoE-/- mice, and those of which were recused by BHD and Atorvastatin. These results suggested that M1/M2 macrophages polarization produce the inflammatory response against AS progress after BHD exposure.


Atherosclerosis , Drugs, Chinese Herbal , Macrophages , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Mice , Atherosclerosis/drug therapy , Atherosclerosis/pathology , Atherosclerosis/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Apolipoproteins E/genetics , Apolipoproteins E/deficiency , Disease Models, Animal , Mice, Knockout, ApoE , Mice, Knockout , Mice, Inbred C57BL , Cytokines/metabolism
14.
Article En | MEDLINE | ID: mdl-38780293

ABSTRACT: The traditional Chinese herbal prescription Buyang Huanwu decoction (BHD), effectively treats atherosclerosis. However, the mechanism of BHD in atherosclerosis remains unclear. We aimed to determine whether BHD could alleviate atherosclerosis by altering the microbiome-associated metabolic changes in atherosclerotic mice. An atherosclerotic model was established in apolipoprotein E-deficient mice fed high-fat diet, and BHD was administered through gavage for 12 weeks at 8.4 g/kg/d and 16.8 g/kg/d. The atherosclerotic plaque size, composition, serum lipid profile, and inflammatory cytokines, were assessed. Mechanistically, metabolomic and microbiota profiles were analyzed by liquid chromatography-mass spectrometry and 16S rRNA gene sequencing, respectively. Furthermore, intestinal microbiota and atherosclerosis-related metabolic parameters were correlated using Spearman analysis. Atherosclerotic mice treated with BHD exhibited reduced plaque area, aortic lumen occlusion, and lipid accumulation in the aortic root. Nine perturbed serum metabolites were significantly restored along with the relative abundance of microbiota at the family and genus levels but not at the phylum level. Gut microbiome improvement was strongly negatively correlated with improved metabolite levels. BHD treatment effectively slows the progression of atherosclerosis by regulating altered intestinal microbiota and perturbed metabolites.


Apolipoproteins E , Atherosclerosis , Diet, High-Fat , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/drug effects , Drugs, Chinese Herbal/pharmacology , Atherosclerosis/drug therapy , Atherosclerosis/pathology , Atherosclerosis/metabolism , Diet, High-Fat/adverse effects , Mice , Male , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Mice, Inbred C57BL , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/pathology , Mice, Knockout , Mice, Knockout, ApoE
15.
Arthritis Res Ther ; 26(1): 87, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38627782

BACKGROUND: We aimed to reveal the effect of abatacept (ABT) on atherosclerosis in rheumatoid arthritis (RA) patients, 3-year efficacy for arthritis, and safety in a population of older vs. younger patients. METHODS: In this open-label, prospective, observational study, patients were stratified into four groups: younger (20-64 years old) and older (≥ 65 years) patients taking ABT (AY and AO) and conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) (CY and CO). Primary endpoints were change from baseline in mean intima-media thickness (IMT) of the common carotid artery, IMT max (bulbus, bifurcation, and internal and common carotid artery), and plaque score at Week 156. Disease activity, retention rate, and adverse effects were also evaluated. RESULTS: The ABT group (AY + AO) tended to have smaller increases in mean IMT, max IMT, and plaque score than the csDMARD group (CY + CO) at Week 156, although the differences between groups were not statistically significant. Multivariate analysis showed significantly lower increases in plaque score with ABT than with csDMARDs, only when considering disease activity at 156 weeks (p = 0.0303). Proportions of patients with good or good/moderate European League Against Rheumatism response were higher in the ABT group, without significant difference between older and younger patients. No significant differences were observed in ABT retention rates between older and younger patients. Serious adverse effects, especially infection, tended to be more frequent with ABT than with csDMARDs, although no significant differences were found. CONCLUSIONS: ABT may decelerate atherosclerosis progression and may be useful for patients with high risk of cardiovascular disease, such as older patients. TRIAL REGISTRATION NUMBER: UMIN000014913.


Antirheumatic Agents , Arthritis, Rheumatoid , Atherosclerosis , Humans , Aged , Young Adult , Adult , Middle Aged , Abatacept/adverse effects , Carotid Intima-Media Thickness , Prospective Studies , Arthritis, Rheumatoid/drug therapy , Antirheumatic Agents/adverse effects , Atherosclerosis/drug therapy , Treatment Outcome
16.
J Ethnopharmacol ; 330: 118209, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38663779

ETHNOPHARMACOLOGICAL RELEVANCE: Dan-shen Yin (DSY), a traditional prescription, has been demonstrated to be effective in decreasing hyperlipidemia and preventing atherosclerosis (AS), but its mechanism remains unknown. We hypothesized that DSY activates farnesoid X receptor (FXR) to promote bile acid metabolism and excretion, thereby alleviating AS. AIM OF THE STUDY: This study was designed to explore whether DSY reduces liver lipid accumulation and prevents AS by activating FXR and increasing cholesterol metabolism and bile acid excretion. MATERIALS AND METHODS: The comprehensive chemical characterization of DSY was analyzed by UHPLC-MS/MS. The AS models of ApoE-/- mice and SD rats was established by high-fat diet and high-fat diet combined with intraperitoneal injection of vitamin D3, respectively. The aortic plaque and pathological changes were used to evaluate AS. Lipid levels, H&E staining and oil red O staining were used to evaluate liver lipid accumulation. The cholesterol metabolism and bile acid excretion were evaluated by enzyme-linked immunosorbent assay, UPLC-QQQ/MS. In vitro, the lipid and FXR/bile salt export pump (BSEP) levels were evaluated by oil red O staining, real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting. RESULTS: A total of 36 ingredients in DSY were identified by UPLC-MS/MS analysis. In vivo, high-dose DSY significantly inhibited aortic intimal thickening, improved arrangement disorder, tortuosity, and rupture of elastic fibers, decreased lipid levels, and reduced the number of fat vacuoles and lipid droplets in liver tissue in SD rats and ApoE-/- mice. Further studies found that high-dose DSY significantly reduced liver lipid and total bile acids levels, increased liver ursodeoxycholic acid (UDCA) and other non-conjugated bile acids levels, increased fecal total cholesterol (TC) levels, and augmented FXR, BSEP, cholesterol 7-alpha hydroxylase (CYP7A1), ATP binding cassette subfamily G5/G8 (ABCG5/8) expression levels, while decreasing ASBT expression levels. In vitro studies showed that DSY significantly reduced TC and TG levels, as well as lipid droplets, while also increasing the expression of ABCG5/8, FXR, and BSEP in both HepG2 and Nr1h4 knockdown HepG2 cells. CONCLUSION: This study demonstrated that DSY promotes bile acid metabolism and excretion to prevent AS by activating FXR. For the prevent of AS and drug discovery provided experimental basis.


Atherosclerosis , Bile Acids and Salts , Drugs, Chinese Herbal , Rats, Sprague-Dawley , Receptors, Cytoplasmic and Nuclear , Signal Transduction , Animals , Bile Acids and Salts/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Male , Drugs, Chinese Herbal/pharmacology , Signal Transduction/drug effects , Atherosclerosis/prevention & control , Atherosclerosis/metabolism , Atherosclerosis/drug therapy , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , Mice , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Liver/drug effects , Liver/metabolism , Liver/pathology , Lipid Metabolism/drug effects , Mice, Knockout, ApoE , Rats , Humans
17.
J Ethnopharmacol ; 330: 118150, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38631487

ETHNOPHARMACOLOGICAL RELEVANCE: JiaWei DaChaiHu is composed of Bupleurum chinense, Scutellaria baicalensis, Pinellia ternata, Paeonia lactiflora, Zingiber officinaleRoscoe, Poncirus tuifoliata, Rheum palmatum L., Curcumae Radix, Herba Lysimachiae, Ziziphus. JiaWei DaChaiHu is one of the most common traditional Chinese medicines for the treatment of depression. AIM OF THE STUDY: The chronic unpredictable mild stress (CUMS) has been shown to promote atherosclerosis (AS). Dachaihu has been widely used in traditional Chinese medicine and has been known to exert distinct pharmacological effects. This investigation aims to examine the therapeutic effect of Jiawei Dachaihu extract on AS animal models with CUMS. METHODS: AS-CUMS mice model was established by Apoe-/- mice. Mice were treated with Jiawei Dachaihu. Serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL-C), high-density lipoprotein (HDL-C) levels were measured using ELISA kits. Aortic tissue pathologic changes detected by oil red O staining. Mice behavioral changes detected by sucrose preference test and sucrose preference test. The relative mRNA expression levels of CRH, ND1, and TFAM were determined by qRT-PCR. 5-HT1A, BDNF, LON, TFAM, PGC-1α, and SIRT1 protein expression determined by western blotting. ATP content detected by ATP kits. RESULTS: The treatment with Jiawei Dachaihu extract alleviated the veins plaque and reduced stress signs in vitro and in vivo. It increased the ATP and HDL-C levels while decreased the TC, TG, LDL-C levels. Jiawei Dachaihu extract treatment upregulated Lon, SIRT1, TFAM, PGC-1α, BDNF, and 5-HT1A protein expression and regained mitochondrial function. CONCLUSION: Jiawei Dachaihu extract could alleviate AS and reduce CUMS by upregulating the SIRT1/PGC-1α signaling and promoted its crosstalk with Lon protein to maintain mitochondrial stability.


Atherosclerosis , Drugs, Chinese Herbal , Mitochondria , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Signal Transduction , Sirtuin 1 , Stress, Psychological , Animals , Atherosclerosis/drug therapy , Sirtuin 1/metabolism , Sirtuin 1/genetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Male , Signal Transduction/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Mice , Stress, Psychological/drug therapy , Mitochondria/drug effects , Mitochondria/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mice, Knockout, ApoE
18.
J Am Coll Cardiol ; 83(17): 1627-1636, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38658101

BACKGROUND: Ticagrelor reduced major adverse cardiovascular events (MACE) and increased bleeding in patients with type 2 diabetes mellitus (T2DM) and coronary artery disease. Limb events including revascularization, acute limb ischemia (ALI), and amputation are major morbidities in patients with T2DM and atherosclerosis. OBJECTIVES: This study sought to determine the effect of ticagrelor on limb events. METHODS: Patients were randomized to ticagrelor or placebo on top of aspirin and followed for a median of 3 years. MACE (cardiovascular death, myocardial infarction, or stroke), limb events (ALI, amputation, revascularization), and bleeding were adjudicated by an independent and blinded clinical events committee. The presence of peripheral artery disease (PAD) was reported at baseline. RESULTS: Of 19,220 patients randomized, 1,687 (8.8%) had PAD at baseline. In patients receiving placebo, PAD was associated with higher MACE (10.7% vs 7.3%; HR: 1.48; P < 0.001) and limb (9.5% vs 0.8%; HR: 10.67; P < 0.001) risk. Ticagrelor reduced limb events (1.6% vs 1.3%; HR: 0.77; 95% CI: 0.61-0.96; P = 0.022) with significant reductions for revascularization (HR: 0.79; 95% CI: 0.62-0.99; P = 0.044) and ALI (HR: 0.24; 95% CI: 0.08-0.70; P = 0.009). The benefit was consistent with or without PAD (HR: 0.80; 95% CI: 0.58-1.11; and HR: 0.76; 95% CI: 0.55-1.05, respectively; Pinteraction = 0.81). There was no effect modification of ticagrelor vs placebo based on PAD for MACE (Pinteraction = 0.40) or TIMI major bleeding (Pinteraction = 0.3239). CONCLUSIONS: Patients with T2DM and atherosclerosis are at high risk of limb events. Ticagrelor decreased this risk, but increased bleeding. Future trials evaluating the combination of ticagrelor and aspirin would further elucidate the benefit/risk of such therapy in patients with PAD, including those without coronary artery disease. (A Study Comparing Cardiovascular Effects of Ticagrelor Versus Placebo in Patients With Type 2 Diabetes Mellitus [THEMIS]: NCT01991795).


Aspirin , Diabetes Mellitus, Type 2 , Platelet Aggregation Inhibitors , Ticagrelor , Aged , Female , Humans , Male , Middle Aged , Aspirin/therapeutic use , Aspirin/administration & dosage , Atherosclerosis/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Double-Blind Method , Drug Therapy, Combination , Ischemia/prevention & control , Peripheral Arterial Disease/drug therapy , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/administration & dosage , Ticagrelor/therapeutic use , Ticagrelor/administration & dosage , Treatment Outcome
19.
Int J Cardiovasc Imaging ; 40(4): 945-948, 2024 Apr.
Article En | MEDLINE | ID: mdl-38558330

In the last century, there has been more than enough research that proved the association of high lipid and glucose levels with cardiovascular disease, thus establishing the current well-known traditional cardiovascular risk factors such as dyslipidemia, diabetes, and metabolic syndrome. Hence, these cardiovascular risk factors are target therapy for glucose and lipid-lowering agents to prevent adverse cardiovascular events. However, despite controlling the lipid and glucose levels, some studies demonstrated the subclinical atherosclerosis suggesting that these cardiovascular risk factors alone cannot account for the entire atherosclerosis burden. In the last years, large-scale clinical trials demonstrated the operation of the inflammatory pathway in atherosclerotic cardiovascular disease (ASCVD) by the immune system, both the innate (neutrophils, macrophages) and adaptive (T cell and other lymphocytes) limbs, contribute to atherosclerosis and atherothrombosis. In this regard, some studies that use antiinflammatory therapy targeting the immune system by modulating or blocking interleukins, also known as anti-cytokine therapy, have been shown to reduce the risk of adverse cardiovascular events in patients with previous coronary artery disease. In this regard, the U.S. Food and Drug Administration (FDA) approved the use of colchicine 0.5 mg once daily for reducing cardiovascular events in patients who have established ASCVD and high residual systemic inflammation. Therefore, measuring the systemic inflammation can improve the cardiovascular risk assessment and identify the subsets of patients that will benefit from anti-cytokine therapy after diagnosis of ASCVD or after myocardial revascularization.


Anti-Inflammatory Agents , Biomarkers , Blood Glucose , Cytokines , Heart Disease Risk Factors , Inflammation Mediators , Inflammation , Triglycerides , Humans , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/adverse effects , Atherosclerosis/immunology , Atherosclerosis/drug therapy , Atherosclerosis/blood , Biomarkers/blood , Blood Glucose/drug effects , Blood Glucose/metabolism , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/immunology , Colchicine/therapeutic use , Colchicine/adverse effects , Cytokines/blood , Cytokines/metabolism , Inflammation/immunology , Inflammation/drug therapy , Inflammation/blood , Inflammation Mediators/blood , Inflammation Mediators/metabolism , Risk Assessment , Risk Factors , Treatment Outcome , Triglycerides/blood
20.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article En | MEDLINE | ID: mdl-38673738

The high content of bioactive compounds in Aronia melanocarpa fruit offers health benefits. In this study, the anti-atherosclerotic effect of Aronia extracts was assessed. The impact on the level of adhesion molecules and the inflammatory response of human umbilical vein endothelial cells (HUVECs) was shown in relation to the chemical composition and the stage of ripening of the fruits. Samples were collected between May (green, unripe) and October (red, overripe) on two farms in Poland, which differed in climate. The content of chlorogenic acids, anthocyanins, and carbohydrates in the extracts was determined using HPLC-DAD/RI. The surface expression of ICAM-1 and VCAM-1 in HUVECs was determined by flow cytometry. The mRNA levels of VCAM-1, ICAM-1, IL-6, and MCP-1 were assessed using the quantitative real-time PCR method. The farms' geographical location was associated with the quantity of active compounds in berries and their anti-atherosclerotic properties. Confirmed activity for green fruits was linked to their high chlorogenic acid content.


Atherosclerosis , Fruit , Human Umbilical Vein Endothelial Cells , Photinia , Plant Extracts , Photinia/chemistry , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Fruit/chemistry , Atherosclerosis/drug therapy , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , Anthocyanins/pharmacology , Anthocyanins/chemistry , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/chemistry , Interleukin-6/metabolism , Interleukin-6/genetics
...